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Quantum Monte Carlo Studies of Electron-Electron 
Interaction Effects in Conducting Polymers 

D. K. Campbell, 1 T. A. DeGrand, 2 and S. Mazumdar 1'3 

We discuss recent studies, using the quantum ensemble projector Monte Carlo 
(EPMC)  method,  of theoretical models of conducting polymers. Our focus is on 
the consequences of incorporating direct electron-electron interactions into the 
"standard" electron-phonon interaction models. Among the observables we 
examine one energetics of purely dimerized ground states, single solitons, soliton 
pairs, averaged spin and charge distributions, and local correlation functions. 

KEY WORDS:  Quantum Monte Carlo; solitons; polyacetylene; 
Peierls-Hubbard models; quasi-one-dimensional systems. 

The most important impetus driving the current explosion of effort on 
quantum Monte Carlo methods is their ability to provide quantitative 
answers, and physical insight, to problems where more conventional 
methods (e.g., perturbation theory, or Hartree-Fock and similar effective 
single-particle theories) fail. One class of such problems involves strongly 
interacting electron systems in condensed matter physics where an accurate 
treatment of true many-body effects is absolutely essential. In this article, 
we discuss one specific class of real materials in which these electron-elec- 
tron interaction effects may play a significant role: namely, quasi-one- 
dimensional conducting polymers. Although relatively "simple" on the scale 
of some of the systems (e.g., lattice gauge theories) studied in other con- 
tributions to these proceedings, conducting polymers--and other synthetic 
metals such as charge transfer salts--have attracted enormous theoretical 
and experimental interest in recent years. In part this interest arises from 
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the many "exotic" broken symmetry ground states--charge and spin den- 
sity waves (CDW, SDW), bond order waves (BOW), and singlet and 
triplet superconductivity (SSC, TSC)--that are theoretically possible in 
quasi-one-dimensional systems. Moreover, the technological potential of 
"plastics that conduct"--and maybe even superconduct-- has not detracted 
from this interest. For additional background and up-to-date surveys of 
this broader field of synthetic metals, interested readers are referred to 
recent conference proceedings (1'2) and reviews. (3) 

To be concrete, we focus entirely on one specific conducting polymer: 
trans-polyacetylene (henceforth, (CH)x). In the theoretical idealization, this 
polymer is an infinite chain, with individual (CH) units connected in the 
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Fig. 1. (a) A (hypothetical) infinite trans-(CH)x chain with uniform bond lengths, that is, no 
dimerization; (b) and (c) The two-degenerate bond alternation patterns of the actual trans- 
(CH)x polymer. The CH units linked by double bonds are slightly closer ( -0 .10  ~,) together 
than those linked by single bonds. The degeneracy in energy between these two structures is 
essential for the presence of kink soliton excitations. 
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herringbone fashion shown in Fig. 1. Since (CH)x may be unfamiliar to 
many readers, we begin with a (minimal) introduction to the current 
theoretical approaches to this material. 

The (apparent) chemical simplicity of (CH)x has made it a central 
focus of research by both chemists and physicists interested in conducting 
polymers. In general, theorists in both groups agree that a model involving 
only the electrons in the n-molecular orbital should be a reasonable first 
approximation. Since this n orbital is composed essentially of carbon 
atomic p orbitals, each containing one electron, both the chemists' and the 
physicists' models correspond to half-filled (one electron/site) one-dimen- 
sional chains. Beyond this point, however, the dogmas of the two groups 
have diverged. 

Physicists, following Peierls, have focused on the electron-phonon 
interaction describing the effects of the n electrons on the backbone lattice 
of (CH) units. The experimentally observed dimerization/bond 
alternation/4)--that is, the fact that the (CH) units linked by double bonds 
in Fig. 1 are physically closer to each other than those linked by single 
bonds--confirms the importance of this interaction. Clearly this bond alter- 
nation breaks the symmetry of the uniformly spaced (undimerized) chain; 
in the terminology mentioned above, this broken symmetry state is called a 
bond order wave (BOW). In the context of trans-(CH)x, the specific 
Peierls-like model developed by Su, Schrieffer, and Heeger (SSH) (5) has 
stimulated considerable interest, particularly because of its prediction that 
nonlinear 'soliton' excitations--'kinks' (with exotic spin/charge relations), 
polarons, and 'breathers'--would play an important role in the observable 
properties of the polymer. Since the electrons interact directly only with the 
phonons and not with each other, the SSH model is a single-electron 
theory. Consequently, it can readily be studied both numerically~5)--in the 
discrete, lattice version, even for (adiabatic) dynamics--and, in the con- 
tinuum limit, analytically. (3/ The original SSH model, however, takes no 
explicit account of the direct interactions between the electrons. 

In contrast, chemists have asserted that direct electron-electron 
interactions--essentially Coulombic repulsions, either long-range or 
screened--are the dominant feature of quasi-one-dimensional conducting 
polymers. Their theorists have used various techniques to study models, 
such as the Pariser-Parr-Pople (PPP) Hamiltonians incorporating these 
effects. For an introduction to this class of models to finite polymers see 
Ref. 6. Since these models involve explicit electron-electron interactions, 
they lead invariably to many-electron problems. A terminology common in 
the literature, and one we adopt, is to refer to these interacting many-elec- 
tron systems as "correlated bands" and to use the term "correlation effects" 
when we mean the effects of direct electron-electron interactions. Many 
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electron problems are generally analytically inaccessible, except by 
approximate methods such as Hartree-Fock. Unfortunately, it has recently 
become clear (7~ that, precisely in models of quasi-one-dimensional con- 
ducting polymers, these approximate methods can lead to qualitatively 
incorrect results. Further, correlated band problems are also numerically 
daunting, since the number of electrons states grows roughly as 4 N, where 
N is the number of lattice sites. Thus exact diagonalizations of PPP 
Hamiltonians for finite-size systems can at present be carried out only up 
to N -  12. (1~ 

As an (important) illustration of the differences between the two types 
of models, consider the interpretation of the experimental data on optical 
absorption in trans-(CH)x. In the physicists' electron-phonon models, the 
optical gap is attributed entirely to the change in the Fermi surface caused 
by the "Peierls distortion" that leads to the dimerization of the chain. In 
the chemists' models, on the other hand, the optical gap comes at least in 
part from the electron-electron interactions--as is familiar from the exact 
solution (11) to the half-filled Hubbard model--and there would be a gap 
even if there were no dimerization of the chain. 

In view of the considerably greater simplicity of the single-electron 
models, it is natural to hope that some variant of the SSH model--with 
effective parameters chosen to include some of the electron-electron 
interaction effects and perhaps with a perturbative treatment of additional 
direct interactions--would apply to (CH)x. Unfortunately, three clear 
pieces of experimental data strongly suggest that this is not the case. First, 
the observed ordering of the excited states (12) in finite polyenes--for exam- 
ple, octatetraene, which has 8 CH units--is inconsistent with any (one- 
dimensional) single-electron model but can be well-described by models 
incorporating correlations. Second, the observation (via coupled elec- 
tron-nuclear magnetic resonance (13)) of negative spin densities on alternate 
carbon atoms is inconsistent with a pure SSH model no matter how the 
parameters are chosen. Third, the optical absorption from neutral kink 
solitons occurs near the "band edge, ''(141 rather than at midgap, as predic- 
ted by the SSH model. This indicates that correlation effects are playing an 
important---and not just a perturbative--role in the observed optical 
properties of trans-(CH)x. All in all, an objective view of the full 
experimental situation requires that one adopt neither the chemists' nor the 
physicists' dogma but instead study, nonperturbatively and without using 
Hartree-Fock techniques, models involving both electron-phonon and 
electron-electron interactions. In the remainder of this contribution, we 
summarize some of the results of several recent studies along these 
lines. (9'15"16) The Hamiltonians that have been studied belong to a class that 
can be termed 'Peierls-Hubbard' models 
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Here Yi and Pi represent (respectively) the displacement and momentum of 
the ith (CH) unit and thus describe the intersite phonons of the backbone 
lattice. One can also consider models for systems in which the individual 
chemical units are themselves complicated molecules having localized 
intrasite phonons coupled to the onsite charge density. Charge transfer 
solids provide a physical example of such systems. For simplicity and in 
view of our interest in (CH)x we ignore these additional terms here. The 
operator ci, s(ci +) annihilates (creates) an electron of spin s (=  +�89 -�89 at 
site i. The electron density is pi, s = c~ + c;,~ and p~--Pi.s + P~.-s. The first two 
lines of (1) are just the conventional SSH model, with parameters M (the 
(CH) unit mass), K (representing the strain energy of the ~ bonds), to (the 
bare hopping), and ~ (the electron-phonon coupling). The third line con- 
tains the standard extended Hubbard interactions: an on-site repulsion 
U(>0)  and a (repulsive) nearest-neighbor interaction (V~ >0). The final 
line represents long-range electron-electron interactions via the parameters 
Vj for j >  2. Clearly, (1) contains the usual SSH, Hubbard, and extended 
Hubbard models, and for specific choices of U and the Vj can reproduce 
any of the parameterizations of the PPP model. (6'9'16) 

In view of our focus on quantum Monte Carlo methods, we treat only 
the extended Hubbard model: that is, the first two lines of (1). Although 
there are some results ~~ on the effects of long-range interactions (Vj, 
with j~> 2), they have not been obtained with Monte Carlo techniques. 

Our studies neglect the dynamical (quantum) nature of the phonons: 
formally, this amounts to taking M ~ o e - - t h e  Born-Oppenheimer 
limit--in (1). In fact, careful analysis (17) of the effects of quantum phonons 
indicate that--as one might expect in view of the large (CH) mass--for 
most properties this neglect provides a quantitatively good approximation. 
To investigate the extended Hubbard model (U, VI ~ 0) we use the recently 
developed the "ensemble projector Monte Carlo" technique. (9'~5'~8~ Stripped 
of technical details, the EPMC method is based on the observation that for 
an arbitrary wave function ~u and for large/~ 

exp( - f i l l )  ~U=exp(-~E~,){co~bo+O~exp-fl(E~-Eo)]} (2) 

where q~,, is the true ground state. In words, (2) says that applying the 
operator exp(-/3H) for large [~ "projects out" the ground state (qso) with 
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exponential accuracy (assuming there is a gap, that is, that E~-Eo ~0) 
provided only that the chosen trial function is not orthogonal to ~b o (that 
is, co r 0), In practice, we take gt to be an ensemble (typically with 5000 
members) of real space configurations. Hence the name EPMC. Details of 
the method are available elsewhere. (9,18) 

In our experience, the EPMC gives very accurate energies even for 
relatively large (N-~ 30) systems, gives acceptable spatially averaged quan- 
ti t ies-for example, the overall ratio of negative to positive spins--but 
gives fairly poor local information on the wave function unless an unaccep- 
tably large number of states is used in the ensemble. To illustrate these 
comments, we give below results for each of these three types of obser- 
vables. 

From energetic studies alone we can learn much about the influence of 
electron-electron interactions. A natural first question is: "Does the 
dimerization found in the SSH model persist in the presence of strong e-e 
interactions?" This is of great interest for two reasons. First, the broken 
symmetry and two-fold degenerate ground state corresponding to the 
dimerization are essential for the presence of kink solitons. Second, based 
on earlier results obtained by approximate methods, it was believed that 
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Fig. 2. The magni tude of the electronic energy difference between a dimerized (CH)~ chain 
with 6 =0.1 (see text) and a uniform chain for an N =  32 site ring plotted vs the onsite Hub-  
bard  parameter  U. The ar row on the left indicates the exact U = 0 result. The enhancement  of 
the energy gained upon  dimerization for intermediate U is clearly shown, 
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even moderate correlations would destroy dimerization. For  a thorough 
discussion of the Har t ree-Fock results for the extended Hubbard model as 
applied to polyacetylene see Ref. 19. Since dimerization has been observed 
in (CH)x, this (incorrect) belief was used to assert that the e-e interactions 
had to be small. In fact, our results confirm earlier recent studies (using 
both Monte Carlo n) and exact diagonalization methods ~8)) that even fairly 
strong on-site interactions--U~-4to--actually enhance dimerization. The 
inclusion of V1 (up to V I -  ! U  - 2  , see below and Ref. 16) tends to enhance 
dimerization further. This is shown in Fig. 2, where the (electronic) energy 
gained upon dimerization is plotted versus U for V1 = 0. Note that AEa is 
defined as the difference between a system in which the sequential transfer 
integrals alternate between tu+l  = t +  =to(1 +26) and t u + l = t  = 
to(1-23) and the uniform system with all t i=  to. The data in Fig. 2 (9/are 
for a N--- 32 site (closed) ring with 6 = 0.1 and show clearly the tendency of 
U to enhance the dimerization. 
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Fig. 3. The magni tude of the persite electronic energy difference between the neutral soliton 
and the neutral dimer for N = 21 plotted versus U for several values of V~ = V. The soliton is 
always lower in energy. 



8 1 0  C a m p b e l l ,  D e G r a n d ,  a n d  M a z u m d a r  

Since the EPMC method appears to yield information only about 
ground states, one might wonder how we are able to extract information 
about kink solitons, which one normally thinks of as excited states of the 
polymer. In fact, for finite odd (open) chains, it has been known for some 
time (2~ that the ground state in the SSH model- - that  is, for U and 
V/= O~is a kink soliton, rather than a pure dimer. Does this situation per- 
sist in the presence of correlations? In Figs. 3 and 4 we show the results for 
both the neutral (Fig. 3) and charged (Fig. 4) solitons for a N =  21 unit 
chain with ~ =0.1. Note that in our EPMC approach, a soliton in the 
backbone chain is defined as a reversal of the bond alternation pattern 
about a single site. This single-site soliton is clearly not optimal 
variationally--one would expect the lattice to relax over several sites--but 
nonetheless one sees from the figures that the solitons remain the ground 
states even at large U and V1. Note the clear difference between the case of 
the neutral soliton--where the energy difference falls continuously with U 

0.20 

0.15 

X 

-7 
Ld 

- -  0.10 

0.05 

I I I I I I I - 7 - - - F  

Vl,21 :V  

�9 V = O  
0 V=I 
A V=2 

V=3 

t 

i 
I I I I I I I 
0 I 2 3 4 5 6 7 8 

U / t  o 

Fig. 4. The magnitude of the persite electronic energy difference between the positively 
charged soliton and the positively charged dimer for N =  21 plotted versus U for several 
values of V1 = V. The soliton is always lower in energy. 
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and V1 and is, within numerical uncertainties, a function of U - V 1  
only--and that of the charged soliton, where there is an initial increase in 
the energy difference before a much slower decrease and where nonzero V1 
greatly increases the stability of the soliton vis-a-vis the dimer. Several 
further points should be made. First, within errors, AEs+ = AEs_ ,  as one 
would expect from the particle-hole symmetry of (1) in the half-filled band. 
Second, the trends in the energy differences for U ~  0 are consistent with 
perturbation theory results. (2~) Third, the curves in the figures are all for 
V~ < �89 this is necessary for the ground state of (1) to remain a BOW. For 
V1 >�89 the ground state becomes an on-site charge density wave 
(CDW). {16~ Finally, the presence of a nearest-neighbor term (V~.2~ = V1) 
between the two ends of the open chain is a technicality necessary to 
preserve the correct symmetries of the Hamiltonian in the finite-chain 
case.(9,15) 

The last point we study with energetics is the experimentally crucial 
issue of soliton doping: does a system of N - 2  electrons (for p-type 
doping) on N sites prefer to have two solitons (S +, S +), or to be a doubly 
charged dimer (D2+) 9 In Fig. 5 we present our data indicating that, at 
least for U <  6to, the S +S + configuration is lower in energy than the D 2+. 
Thus soliton doping persists even for relatively strong correlations. 
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Fig. 5. The magnitude of the difference between the S+S + and the D 2+ configurations (see 
text) on a N =  18 unit chain. The S+S + configuration is always lower in energy, indicating 
that 'soliton doping' persists for U = 0. The arrow marks the exact energy difference for U = 0. 
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To illustrate the nature of our EPMC results for spatially averaged 
correlation functions we plot in Fig. 6 the ratio of the sum of the excess 
negative spin (p_ < 0) to the excess positive spin (p + > 0) for a nine-site 
chain containing a neutral soliton. Since the neutral soliton has a total of 1 
unit of net spin, p+ + p = 1. For  the spin-up soliton in the SSH model, 
p = 0. When correlations are present, p_ V= 0 and the ratio can take on a 
nonzero value. Although the data are sparse, within errors this ratio 
appears to be a function of U - V 1  alone. The point labeled PPP  is the 
result of an exact finite-size diagonalization of the P P P  model with certain 
specific Vj: {1~ it is also the value deduced from experiment. (13) Note the 
(modest) dependence on the number of states in the ensemble and the 
deviation, at U =  0 = V1, from the known exact answer ( p _ / p +  = 0). 

As a final illustration of the EPMC method, we show in Fig. 7 the 
site-by-site spin and charge distributions of neutral and charged solitons 
(respectively) for a N =  9 site chain. The solid curve represents the exact 
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Fig, 6. The  r a t i o  of  the  s u m  over  a 9-site c h a i n  of  the excess nega t ive  spin  to  the  s u m  of  the 
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Fig. 7. The spin (~) and charge (Q) distr ibut ions for neutral and charged (respectively) 
sol i tons on a N = 9 site chain.  The solid lines are the exact  SSH results  and  the da ta  points  are 

E P M C  results for two different size ensembles.  

result for U= V= 0, while the two sets of data points represent results of 
EPMC runs with different size ensembles. For 150 states, the EPMC 
results show strong systematic errors. Although the 10,000 state ensemble 
does reproduce the exact answer (within errors) for this N =  9 case, since 
the number of states needed in the EPMC ensemble is expected to grow 
rapidly with system size, we see that, unless improvements can be made in 
the sampling procedure, obtaining accurate information on the detailed 
wave functions for any reasonable size system would require using unac- 
ceptably large ensembles. 

In summary, we have shown that quantum Monte Carlo techniques 
can provide essential insight into the physics of quasi-one-dimensional con- 
ducting polymers when electron-electron interactions are added to the 
standard electron-phonon models. Although much progress has been 
made, many questions--for example, the nature of the optical gap, optical 
absorption, and photo-induced absorption--remain unanswered when 
both types of interactions are present. Further, as the number of interesting 
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new real quasi-one-dimensional materials(l'2)--conducting polymers, 
charge transfer solids, blue bronzes--continues to grow, the possibilities for 
clear experimental confirmation (or refutation!) of theoretical predictions 
increase. Thus the subject of low-dimensional real materials remains one of 
the most exciting areas to which quantum Monte Carlo methods can be 
applied. 
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